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ACTIVE CONTROL OF ENVIRONMENTAL
NOISE, III: IMPLEMENTATION OF THEORY

INTO PRACTICE
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In paper I [1] a theory for generating electronically controlled acoustic shadows
for environmental noise reduction was considered. In paper II [2] the theory was
extended to complex high frequency sound from non compact sources. Finally
paper IV [10] considers the practical applications of the theory. These studies
show that deep shadows are theoretically possible. This paper considers the
implementation of the theory into a practical multichannel free-field control
system and its basic performance. Providing certain stability conditions are met,
deep shadowsq 60 dB are generated at the microphones, limited only by the
ambient noise of the laboratory.

7 1999 Academic Press

1. INTRODUCTION

At the outset of this study, there was daunting advice from the ‘experts’ that, from
their experience, particularly in enclosures, active noise control in unrestricted
space would be a formidable task. Their investigations revealed that sound
reductions hardly reached double figures (in dB’s): the higher the frequency, the
less the reduction, both in region size and attenuation depth. Then for outdoor
non-compact (large) sources, there was the additional problem of requiring large
multi-channel systems, which from a stability point of view, ‘could fall apart’.

Well, this appeared to be the situation. However, most of the outdoor studies
were ad hoc, applied to a particular environment, with little knowledge of the
acoustics or control strategies envolved. It was decided therefore, to build a special
purpose facility to establish the basic performance of free-field active noise control
(ANC) systems, under strict laboratory controlled conditions, and to establish
how close hardware systems could perform compared to the theoretical predictions
[1], [2] and [10].

Active Noise Control is reducing noise by cancelling it with a negative replica
(antisound). Much of the past work in this area has been applied to noise reduction
in confined spaces, such as ducts and enclosures. The aim of the present work is
to investigate systematically ANC methods for outdoor applications, through the
development of freefield electronically controlled acoustic shadow (ECAS)
systems, as illustrated in Figure 1.
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Figure 1. Electronically controlled acoustic shadow (ECAS) system.

The resulting shadows are predicted to be superior to conventional shadows
produced in nature by solid boundaries. This is made possible through the
cancelling secondary sources having intelligence, adjusting their strengths
automatically to produce the optimum shadow. A conventional solid boundary
can attempt only to return the sound pressure evenly across its surface. This results
in a non-optimum shadow, with sound leakage through diffraction effects from
around the body edges. Thus the impressive performance of the Electronically
Controlled Acoustic Shadow system, gave considerable motivation to establish if
a practical implementation of the theory into hardware would be possible.

The following investigation describes the appropriate hardware necessary to
establish the basic system performance, and the control schemes necessary to
produce deep shadows. The paper is not an exhaustive study of control strategies,
nor a plethora of experimental data. This is a subject for further publications.
However, sufficient data is given to varify a successful practical demonstration.

2. THEORY INTO PRACTICE

2.1.  

Normally, industrial control systems are electrically compact, where the system
size is small compared with the electrical disturbance wavelength. Here the plant
response is dominated by time and phase delays caused by the lumped electrical
and mechanical components within the system. However, in acoustical plants the
acoustic wavelength is often smaller than the physical system size to be controlled.
In this case the plant is considered non-compact or spatially distributed. Here the
acoustic system response is dominated by the disturbance propagation times
within the plant. In our application, the dominant plant is the free-field
propagation matrix between the secondary sources and microphones.
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Physically, cancelling sound in free field (large unrestricted space) is quite
different from cancelling sound in enclosures. This results in quite a different plant
to control. The cancelling secondary sound within confined spaces, for example,
is not usually travelling in the same direction as the primary sound; it is also
usually diffuse, sometimes resonant. In this case the resulting cancellation area
(quiet zone) is confined to within a fraction of a wavelength of the detector.

However, it is not generally understood that, for progressive fields and
successive alignment of the primary sources, secondary sources and error
detectors, the quiet zone can extend to infinity, or at least to large distances, no
matter what the frequency. This makes the plant, in some ways, potentially more
controllable than enclosed fields, and high frequency noise reduction a more
realistic possibility by using this technique. In control terms, the free-field plant
has unique characteristics, with its own sets of eigenvalues, stability, convergence
and error criteria.

2.2.  

In any useful control system the plant has to be stable. In this application, the
stability of the free-field plant will depend primarily on the propagation free-field
path delays and on the combined electro-mechanical transfer function of the
system (filters, amplifiers, loudspeakers and microphones). Rather than attempt to
investigate the stability of complex primary sound cancellation in general, in the
time domain, it was considered more instructive, initially, to establish the basic
discrete frequency performance in the frequency domain. Correspondingly, rather
than using the filtered×algorithm, and ‘long’ finite impulse response (FIR) filters,
the stability and adaptive performance, is investigated by using the basic delayed
least mean square (LMS) algorithm, and monochromatic two tap FIR filters.

For the system to be stable, the phase around each of the individual adaptive
loops, at any frequency, should be close to a multiple of 2p radians. It is found
that many stability regions can exist for a given frequency, whose position and
number can be selected through altering the sample delay in the LMS algorithm.
For optimum adaptive performance, in terms of convergence speed, shadow depth
and harmonic distortion, it is essential for each of these adaptive loops to operate
close to the centre of its stability region, and all stability regions to be aligned at
the frequency of interest.

A further condition needed for multichannel systems to converge effectively is
that the transfer function of the multi-channel plant, governed by the free-field
propagation matrix, should be robustly stable. The robustness of this system is
investigated by using, firstly, conventional control condition methods, and
secondly, by a novel sum and difference acoustic theory. Robustness is expressed
in the frequency domain through the concept of condition spectra, where it is
found that the free-field propagation matrix has multiple condition peaks.
Providing these peaks are avoided and other stability criteria are met, system
convergence should be assured.
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Figure 2. ECAS laboratory system.

2.3.  

Detailed analysis predicts that deep shadows (q120 dB) are possible, indicating
that practical shadows (q20 dB) are potentially achievable.

The task now is to build a practical free-field system and establish its basic
performance. A purpose built anechoic facility 6 m×6 m×5 m has been
constructed at the University of Huddersfield and free-field systems implemented
into hardware as illustrated in Figure 2 and Figure 3. The eight channel system
is based on the Texas Instruments TMS320C32 processor using a 2 tap FIR filter
and a circular buffer technique to implement the delayed version of the LMS
update algorithm. This allows easy algorithm implementation in software and
significantly reduces computation time for large channel number systems.

A 16 input 8 output AD/DA board PC16IO8 provides a 12 bit interface with
external equipment. The board contains three selectable levels of gain 1, 10 and
100. The cancelling stereo loudspeakers (secondary sources) are each 20 W
containing their own power amplifiers and power supplies (in pairs); their
frequency response is 32 Hz to 20 kHz. The stereo preamplifiers have a fixed gain
of approximately 100 and a frequency response of 30 Hz to 15 kHz; they are
battery powered. The simulated primary source is constructed from sixteen 8 inch,
20 W loudspeakers. These are mounted on a 1 m square baffle powered from a
120 W power amplifier. There is a provision to drive individual banks of speakers
with relative phase variation
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2.4.   

Figure 4 shows a schematic diagram of a general adaptive control system. X is
the sound from the primary noise source. P is the primary propagation path to
the cancelling point, where the sound arrives as D. In the lower path, W is a weight
adjustment filter which modifies a copy of X to Y. The sound is then modified as
it propagates along the cancelling path C where it becomes Y' at the cancelling
point.

The sounds from the primary and cancelling paths are monitored at the
cancelling point; the error E between them is then used to adjust W via the LMS
algorithm to make Y' equal but opposite to D. This process continues until E goes
to zero. C
 is a copy of C which allows performance flexibility implemented through
the LMS algorithm.

Figure 3. ECAS facility picture.
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Figure 4. Basic control system.

2.5.  

The main steps in the adaptive process for a multi-channel system are given
below; for brevity the theory is given in a simplified form. More rigorous and
therefore necessarily extensive mathematical treatments, for example, can be found
in references [3–6]. Each step in the process is executed at each sampling time step
(sample number n not indicated).

E=D+Y', (1)

Y'=C ( Y, Y=XTW, (2)

C11 C12 · · C1s

C21 ·

C= · · , (3)G
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· ·

Cm1 · · · Cms

E=D+C ( (XTW). (4)

W is adjusted until

C ( (X TW):−D making E:0. (5)

Traditionally, in control theory, the error is usually given as the difference
between D and Y'. However, in acoustic systems, the error detectors
(microphones) can physically only add these components.

For a multichannel ANC system with m error microphones and s secondary
sources, the error vector between Dm×1 and Y'm×1 for all microphones, is E=Em×1.
The vector Y'm×1 =Y's×1 represents the summation of signals at each of the
microphones, from all the secondary sources, after being modified by the
propagation matrix C=Cm× s , i.e., Y'm =as Ys Cms . The propagation matrix
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elements Cms are the impulse response functions between the microphones (m) and
secondary sources (s). The vector Y=Ys×1 is the output to the secondary sources
from the reference signal X, after being modified by the filter weights W, i.e.,
Ys =XWs . The matrix X=Xs× s is a diagonal matrix of s reference noise signals.
For a common reference all elements are equal. T indicates the transpose of X,
and the operation ( denotes linear convolution.

The cost function that is minimized in the adaptive process is the sum of mean
squared errors j from all microphones m. If the signal character is varying slowly
compared with the sampling time, then the instantaneous squared error can be
used to estimate the mean squared error given by

j= s
M

m=1

E2
m =ETE. (6)

The algorithm that is used to control the adaptive process is the classical LMS
algorithm [3], given by

W(n+1) =W(n) − (m/2)9j (7)

where (n+1) and (n) are the new and previous sample numbers, respectively. m

is the adaptive step size and 9 is the derivative with respect to the weight
adjustment vector W. From equations (4) and (6)

9j=9 s
M

m=1

E2
m =2X'E, X'=C
 ( X, (8)

giving

W(n+1) =W(n) − mX'E. (9)

X' is known as the ‘filtered X’ source signal and C
 can be an adequate
representation/estimation of C.

2.6.  

In the frequency domain each of the expressions below is a function of
frequency, v (not shown). For a steady discrete primary source, X=1, equations
(4), (7) and (8) (see Appendix) give the general frequency domain relationship as

E=D+CW, j=EHE 9j=2CHE, (10)

W(n+1) =W(n) − mCHE, (11)

or, upon substituting equation (10) back into equation (11)

W(n+1) = [I− mCHC]W(n) − mCHD (12)

I is a unity diagonal matrix and H is the Hermitian transpose of the complex
conjugate of C. Because the total error surface j is quadratic (bowl shaped),
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differentiation of j, with respect to W, equation (8), and equating to zero gives
the minimum (bottom of the bowl) value: i.e., optimum W0 given by

W0 =−(CHC)−1CHD. (13)

This is the Wiener solution which is equivalent to equation (19), given in
reference [1] and is identical to equation (5.3.45), in reference [6]. Substituting back
in equations (4) and (6), or equation (19) in equation (18) in reference [1] (see
Appendix) gives the minimum total error jmin as

jmin =DH[I−C(CHC)−1CH]D. (14)

2.7.  

Figure 5 shows a physical implementation of the schematic control system given
in Figure 4. Syn represents the synthesis of the sound X*, synchronized from the
primary source X.

Alternatively a microphone could be used to measure X. Unfortunately a
feedback path is then created between the secondary source loudspeaker and this
microphone. The arrangement then has the potential to become unstable,
requiring various schemes, such as infinite impulse response (IIR) filters, to reduce
the instability. The functions Hf , Hc and Hm represents the transfer functions of
the signal conditioning filters, cancelling sources and microphones respectively. Hr

is the transfer function for the propagation distance between the sources and
microphones which is equivalent to a phase retardation.

For a single frequency primary noise signal, the elements of the propagation
matrix C can be replaced by simple delays. This modification of the previously
described filtered×LMS algorithm is known as the delayed×LMS algorithm. It
significantly reduces the computation requirements of the ANC system, and
provides a simpler characterization of the adaptive process. In the frequency
domain, the individual stability regions and the individual components of the
complete transfer function of the adaptive process can be isolated and investigated
directly. This then allows the quality of the stability performance to be investigated
in terms of bandwidth, attenuation depth, speed of convergence and spectral
distortion as a function of frequency.

Figure 5. Practical control system.
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Figure 6. Discrete space.

For a single discrete frequency, W can be adequately implemented as a 2 tap
FIR filter. The transfer function around the control loop, Y−E in Figure 5, can
then be written as

Gtf =
Y'
Y

E
Y'

=
E
Y

=HfHcHmHr . (15)

A further phase term is introduced by the delayed LMS algorithm which
effectively introduces a fifth transfer function Ha . This is equivalent to a phase
advance making the overall transfer function

Gtf =HfHcHmHrHa . (16)

This function can be represented by two terms,

Gtf =Gem ejvT (17)

where

Gem =HfHcHm and T=Ta −Tr −Tem . (18)

Gem represents the amplitude term and Tem the delay time of the electromechanical
system and Ta and Tr represents the corresponding time advance and retardation
times, respectively. Basically the adaptive loop is convergent when the phase angle
(f=vT) of equation (17) is equal to an integer number of 2p radians: i.e.,

f={Gtf=2pN2 p/2, N=0, 1, 2, . . . . (19)

Thus there are N stability regions occurring at multiples of 2p and of width 2p/2
radians where some degree of adaptive convergence can be expected.

2.8.  () 

Because the physical system is implemented digitally, propagation space and the
corresponding equations become discretized.

Figure 6 illustrates the propagation space between a secondary source and
microphone, discretized by the sampling time Tn . Here n is the sample number,
fac and lac are the acoustic source frequency and wavelength respectively and c0 is
the sound propagation speed (taken to be 340 m/s in the computations). Also fn
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and ln are the sampling frequency and sampling length, respectively. The following
relations are then self evident:

acoustic wavelength, lac = c0/fac =Tacc0; (20)

sampling period, Tn =1/fn ; (21)

sampling time, T= nTn ; (22)

sampling length, ln =Tnc0 = c0/fn ; (23)

number of samples in distance rsm nr = rsm /ln =(rsm /c0)fn = tr /Tn ; (24)

number of samples in distance lac , nlac = lac /ln =(lac /c0)fn = fn /fac ; (25)

change in number of samples for a change in fac Dn=−(fn /f2
ac)Dfac ; (26)

change in phase f for a change in n, Df=2pfacDT=(2pfac /fn )Dn. (27)

In discrete space the corresponding transfer function from equations (17), (18),
(22) becomes

Gtf =Gem ejv(na − nr + nem)tn (28)

where na and nr are the advance and retarded sample numbers respectively. nem is
the equivalent number of samples for the electromechanical transfer function,
which is of course a function of acoustic source frequency fac , thus

ntf = na − nr + nem (29)

In terms of the number of stability regions (2p radians or wavelengths)

Ntf =Na −Nr +Nem (30)

where the number of equivalent wavelengths in na is:

Na =
na

nac
= na

fac

fn
(31)

and the number of wavelengths in the distance rsm becomes:

Nr =
rsm

lac
= rsm

fac

c0
(32)

Thus

Ntf =0na

fn
−

rsm

c0 1 fac +Nem (33a)

and

Ntf =Nemr (na = nr = rsmfn /c0)=Nem (na = nr =0) (33b)
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Nem is the electromechanical phase number transfer function of the system alone,
i.e. for zero propagation distance between s and m, and Nemr is the phase number
transfer function modified by reflections between s and m. If the propagation space
is anechoic (non-reflecting) then Nemr =Nem . The Ntf is important, it allows the
stability of the adaptive process to be investigated as a function of the propagation
space and environment changes. For good cancellation, it is essential that an
accurate knowledge of this transfer function is obtained. This can be found
manually, through direct measurement of the stability regions, or automatically
through white noise/impulse testing techniques.

Rearranging equation (33) in terms of the sample number and Ntf : N (integer
numbers) and Nem : Nemr generally for non-anechoic conditions, one has

na =0N−Nemr

fac
+

rsm

c0 1 fn (34)

Equation (34), describes the stability regions in the acoustic frequency domain as
a function of the adjustable sample number na . This is implemented through the
delayed LMS algorithm, it can adjust the region’s position within the frequency
spectrum. Relative to nr (the wave propagation sample delay), na is actually a
sample advance term.

The dominant feature of equation (34) occurs when the N contours transform
from a vertical to a horizontal direction, as the acoustic frequency goes to infinity
(large value). Here, for example

(N−Nemr )fn /fac 1 10 giving na 1 10+ rsmfn /c0 (35)

The accuracy of prediction, using the equation (34), will depend on how well Nemr

is known as a function of frequency. If the propagation space is not
anechoic, then the Nemr function could be multivalued (having ripples resulting
through reflections), then stability region splitting could result for the same N.
If na /fn�rsm /c0, region splitting will be less obvious through reflections.

2.9. -  

We now investigate the second condition considered necessary for multichannel
systems to converge effectively. This is that the transfer function of the
multichannel plant has to be robustly stable [5, 6]. In our application the dominant
plant is the free-field propagation matrix between the secondary sources and
microphones. The robustness of this free-field system is established by using,
firstly, conventional condition methods, and secondly, a novel sum and difference
acoustic theory. For simplicity a two channel system is used initially to
demonstrate the basic properties. Higher channel numbers (4 and 6) are then
considered.

2.10.  

Consider the sound pressures P1 and P2 at microphones positions 1 and 2 from
secondary (cancelling) sources of strength Q1 and Q2, as illustrated in Figure 7.

P1 =C11Q1 +C12Q2, P2 =C21Q2 +C22Q2. (36, 37)
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Csm are the propagation elements between the secondary sources (cancellers) s
and microphones m given by

Csm =Rsm ejkrsm, (38)

where k=2p/l=v/c0 is the wave number, (39a)

Rsm =vr0/4prsm is the amplitude term. (39a)

In the above relations rsm is the source/microphone distance, l is the acoustic
wavelength, c0 is the speed of sound, v is the frequency and r0 is the propagation
medium density. The source strength Q, which can be represented, for example,
by a small sphere of radius a and surface velocity u, is defined by the relation

Q= u4pa2. (40)

Equations (36) and (37) are now written in matrix form as

$P1

P2%=$C11

C21

C12

C22% · $Q1

Q2%. (41)

Here, [Csm ] is the propagation matrix in free space; it is the transfer function
between the input Q1, Q2 and the output P1, P2. Its elements can be expressed in
the complex form, where, from equations (38, 39)

Csm = asm +jbsm , asm =Rsm cos krsm , bsm =Rsm sin krsm . (42)

Figure 7. Free field propagation space.
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2.11. 

Eigenvalues, which are the roots of the characteristic equation of the transfer
function, determine the robustness of the system. In this case, depending on how
close the values are to the imaginary axis on the right hand side of the s plane,
or how close to the inside of the unit circle, in the z plane. They are obtained from
the propagation matrix equation through

det [oI−CH
smCsm ]=0, (43)

where o is the eigenvalue, I is the unit matrix of appropriate order,

I=$1 0
0 1%,

and H denotes the transpose of the complex conjugate.
Using general complex numbers and matrix notation shows that if

C=$a11 + jb11

a21 + jb21

a12 + jb12

a22 + jb22% CH =$a11 − jb11

a12 − jb12

a21 − jb21

a22 − jb22%, (44)

then

CHC=$(a11 + jb11)(a11 − jb11)+ (a12 + jb12)(a12 − jb12)
(a21 + jb21)(a11 − jb11)+ (a22 + jb22)(a12 − jb12)

(a11 + jb11)(a21 − jb21)+ (a12 + jb12)(a22 − jb22)
(a21 + jb21)(a21 − jb21)+ (a22 + jb22)(a22 − jb22)%, (45)

giving

CHC=$f11

g21

g12

f22%, (46)

where

f11 = a2
11 + b2

11 + a2
21 + b2

21,

g12 = a11a12 + b11b12 + a21a22 + b21b22 − ja11b12 + ja12b11 − ja21b22 + ja22b21,

g21 = a12a11 + b12b11 + a22a21 + b22b12 − ja12b11 + ja11b12 − ja22b21 + ja21b22,

f22 = a2
12 + b2

12 + a2
22 + b2

22. (47)

Generally, for a symmetrical matrix, suffices 11=22 and 12=21, equation (43)
becomes

det $$o

0
0
o%−$f

g
g
f%%=det $o− f

−g
−g
o− f%=(o− f )2 − g2, (48)

and equating to zero one has

o2 −2fo+ f 2 − g2 =0. (49)
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The eigenvalues are then the roots of the above characteristic equation: i.e.,

o=
2f2z4f 2 −4( f 2 − g2)

2
= f2 g. (50)

Thus one can conclude that the eigenvalues are the sums and differences between
the diagonal and corner values of the propagation matrix given by

o= a2
11 + b2

11 + a2
12 + b2

12 2 2(a11a12 + b11b12), (51)

or

o=R2
11 +R2

12 2 2R	 2, (52)

where, from equation (42),

Rsm =za2
sm + b2

sm and asm =Rsm cos krsm , bsm =Rsm sin krsm , (53a)

and

R	 =za11a12 + b11b12 = (R11R12 cos Du)1/2, where Du= k(r12 − r11).

(53b)

R	 is a mean of R11 and R12. Further, if R11 3R12 3R, then

o3 2R2 2 2R2 3 4R2 and 0. (54)

In general, the characteristic eigenvalues for an arbitrary ECAS geometry are
given by equation (43). For a two channel system, the eigenvalues are given by
equations (43), (46) and (47). For a symmetrical system, the eigenvalues are given
by equations (50), (52) and (53).

2.12.  

As RA1/rsm in equation (54), and if the propagation distances rsm are similar,
then the maximum eigenvalue is large and the minimum value small (close to the
unstable region in the complex s plane) indicating marginal stability.

Now as the number of channels increases, the number of eigenvalues increases,
according to the square of the channel number. This translates into an ever
increasing spread of eigenvalues and therefore mode decay rates. The speed of
convergence of the fastest mode decay rate will then determine the maximum
convergence step size that can be used in the adaptive algorithm, without
instability. The bigger omax the smaller mmax , whereas the minimum eigenvalue will
determine the slowest mode decay rate and therefore the largest time constant tmax

of the overall system. Thus

mmax 1 1/omax and tmax 1Tn /mmaxomin 1TnK, (55)

where

K= omax /omin . (56)

Tn is the sampling time and K is the condition number which gives a numerical
measure of the robustness of the system. For fast convergence (high robustness,
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Figure 8. Vectorial addition of two sound pressures.

low K), from equations (40) and (52), the propagation distances rsm need to be as
dissimilar as possible.

2.13.  

An interesting and apparently novel non-matrix method of investigating the
robustness of multichannel adaptive systems is to consider the vectorial sum and
difference sound pressures, as illustrated in Figure 8, at a microphone from the
cancelling sources as shown in Figure 9.

Here
P11 =R11Q1 eju11, R11 =vr0/4pr11, u11 = kr11, (57)

P12 =R12Q2 eju12, R12 =vr0/4pr12, u12 = kr12, (58)

where the quantities are defined in equations (38)–(40).
The sum and difference pressure, per unit source strength Q (upon assuming

Q1 =Q2) then becomes

P2/Q=R11 eju11 2R12 eju12 =R11(cos u11 + j sin u11)2R12(cos u12 + j sin u12)

=R11 cos u11 2R12 cos u12 + j(R11 sin u11 2R12 sin u12). (59)

Taking the modulus and squaring the above equation gives

=P2/Q=2 = (R11 cos u11 2R12 cos u12)2 + (R11 sin u11 2R12 sin u12)2

=R2
11 cos2 u11 2 2R11R12 cos u11 cos u12 +R2

12 cos2 u12 +R2
11 sin2 u11

22R11R12 sin u11 sin u12 +R2
12 sin2 u12, (60)
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which reduces to

o= =P2/Q=2 =R2
11 +R2

12 2 2R11R12 cos Du, where Du= u11 − u12. (61)

Equation (61) is equivalent to equation (52); it therefore determines also the
eigenvalues of the system. Its physical meaning is interpreted below.

2.14.  

The phase difference Du= u11 − u12 in equation (61) is related to the path
difference Dr between each source and the microphone (in the far field), given by

Du= kDr, k=2p/l, Dr3 r12 − r11. (62)

From the free-field geometry shown in Figure 9, where now a, b and c have the
meaning illustrated in that figure, it is obvious that

r11 =Xc2 +0b− a
2 1

2

= c$1+0b− a
2c 1

2

%
1
2

3 c$1+
1
2 0b− a

2c 1
2

% (63)

and r12 =Xc2 +0b+ a
2 1

2

= c$1+0b+ a
2c 1

2

%
1
2

3 c$1+
1
2 0b+ a

2c 1
2

%, (64)

Figure 9. ECAS geometry.
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providing

c�b+ a. (65)

Thus the path difference can be expressed as

Dr3 r12 − r11 3 c001+
1
2 0b+ a

2c 1
2

1−01+
1
2 0b− a

2c 1
2

11, (66)

or simply Dr3 (b+ a)2 − (b− a)2

8c
=

ab
2c

. (67)

Finally, the phase difference in equation (62) then becomes simply

Du3 pab/lc. (68)

2.15.    

One can now return to the sum and difference equation (61): i.e.,

o= =P2/Q=2 =R2
11 +R2

12 2 2R11R12 cos Du.

The sum (o+) and difference (o−) eigenvalues have alternative coincident maxima
and minima when

=cos Du==1, i.e., when Du= u11 − u12 =mp, where

m=0, 1, 2, 3, . . . , (69)

or, from equation (62), when

Dr=Du/k=m(l/2): (70)

i.e., when Dr is equal to a multiple of half wavelengths.

The maxima and minima of =P+/Q=2 then become

o= =P2/Q=2 =R2
11 +R2

12 2 2R11R12, or o=(R11 2R12)2. (71)

And from equations (56) and (39) the value of the condition number is given by

K= omax /omin =[(R11 +R12)/(R11 −R12)]2 = [(r12/r11 +1)/(r12/r11 −1)]2, (72)

which can become large. In fact if R11 3R12 3R then

o= =P2/Q=2 1 4R2, or 0, and K1a, (73)

which is identical to equation (54).
Finally, the positions of the peaks in the condition number can be found in the

frequency domain from equations (68) and (69): i.e.,

Du=mp= pab/lc, giving l= ab/m, (74)

giving

fm = c0/l=mc0(c/ab), where m=0, 1, 2, 3, . . . . (75)
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For c�(b+ a), in Figure 9, equation (72) can be used to estimate the maximum
values in the condition spectra, and equation (75) their positions. Equation (70)
predicts that these maxima occur at multiples of l/2. Amazingly, even with a large
number of propagation paths, as in large channel number systems, equation (75)
can still basically hold, providing a is replaced by the source spacing d, given by

d=D/(Ns −1), (76)

where D is the source dimension and Ns is the number of equispaced sources along
the dimension.

2.16.   

Figure 10 gives details of the system condition spectra. The geometry is for a
two channel ECAS system as shown in Figure 9, where a=2 m, b=5 m and
c=10 m. Figure 10(a) shows the diagonal and corner values of the CHC matrix
in equation (43), with frequency. Figure 10(b) shows the inverse of the difference
between the diagonal and corner values showing high periodic values when the
corner values approach the diagonal values. Figure 10(c) shows the matrix
eigenvalues as a series of maxima and minimum, increasing with frequency.

Figure 10(d) shows the matrix condition number (ratio of the maximum to
minimum eigenvalues). It can now be seen that the characteristic free-field matrix
condition spectra is comb shaped. The condition number is very low over most
of the spectrum. However, large values occur at (a) very low frequency where the
propagation path differences in terms of the acoustic wavelength are small, and
(b) periodic points within the spectrum, given by equation (75). High condition
numbers need to be avoided if the adaptive process is to converge.

Figure 10. Characteristic of free-field matrix condition spectra (2×2 matrix). (a) Diagonal and
corner elements of CHC matrix; (b) inverted difference between diagonal and corner elements; (c)
eigenvalues; (d) condition number: max (o1 or o2)/min (o1 or o2).
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2.17.    

Figure 11 gives details of the sum and difference acoustic spectra. Again the
geometry is for a two channel ECAS system as shown in Figure 9, with the same
dimensions as in the previous section. Figures 11(a) and (b) show the magnitude
Rsm and phase difference krsm between the two propagation elements C11 and C12,
where

propagation elements, C11 = (vr/4pr11) ejkr11, C12 = (vr/4pr12) ejkr12;

sum and difference, S=C11 +C12, D=C11 −C12.

Figure 11. Details of the sum and difference spectra (2×2 matrix). Propagation elements:
C11 = (vr/4pr11) ejkr11; C12 = (vr/4pr12) ejkr12; also S=C11 +C12, D=C11 −C12. (a) Magnitudes; (b)
phase; (c) real parts of S and D; (d) squared magnitudes of S and D; (e) max/min ratios.
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Figure 12. Multichannel system condition spectra. Channel system: (a) 1×2; (b) 2×2; (c) 1×3;
(d) 2×3.

The magnitude differences gradually increase with frequency whereas the phase
differences rapidly increase (shown in step size of p radians). Figure 11(c) shows
the real part of the sum and difference of the propagation elements C11 and C12.
The modulation amplitude increases with frequency, the maxima of one function
coinciding with zeros in the other. Note that successive zeros, given by alternate
functions, are given by equation (75). Figure 11(d) shows the sum and difference
function magnitude squared given by equation (61). Figure 11(e) shows the ratio
of the maximum to minimum squared values of the sum and difference functions.
It can be seen that the matrix condition spectra in Figure 10, and the sum and
difference acoustic spectra in Figure 11 are equivalent.

Thus it can be seen that maxima in the condition spectra occur when the path
difference between the sources and detectors corresponds to multiples of half
wavelengths or phase differences of p radians.

2.18.   

Figure 12 shows the multichannel condition spectra for 2 and 4 channels (2
layers of 2, separated by 1 m), and 3 and 6 channels (2 layers of 3, separated by
1 m) for ECAS system dimensions a=1 m, b=5 m and c=10 m. Again the half
wavelength spectral peaks, even for moderate channel numbers, are basically given
by equation (75). Also that the peaks thicken (overall condition deteriorates) as
the channel number increases.

These spectra are for simple symmetrical geometries. The spectral peaks can be
manipulated if need be by customizing the ECAS geometry.
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3. MEASURED DATA

After the preceding consideration of the hardware and the control strategy for
the system to adapt effectively, the resulting data is now discussed.

3.1.   

Figure 13 shows the measured stability regions of equation (34) measured for
a single channel plotted as a function of acoustic source frequency fac , sample
advance number na , and for a secondary source—microphone propagation
distance of rsm =0·12 m (speaker close to microphone). From equation (24) and
a sample frequency of fn =4000 Hz, this distance corresponds to a sample
retardation number of nr =1·4. The phase contours of N multiples of exactly 2p
radians are also shown. This figure illustrates that there are N stability regions for
any sample advance number na . Or conversely, for any one frequency fac and
propagation distance rsm (nr number), there is an almost infinite number of stability
regions that can be selected by adjusting na . The main feature of Figure 13, situated
at na 1 12, as fac:a is given approximately by equation (35). Nem as a function
of N can be found when na =0.

3.2.   

Figure 14 shows the same data replotted in terms of the more familiar phase
angle f versus acoustic source frequency fac , for various sample advance numbers
na . The N stability regions are now indicated by the horizontal shaded bars of
width p radians.

Figure 13. Measured stability regions; rsm =0·12 m (nr =1·4).
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Figure 14. Measured transfer functions; rsm =0·12 m (nr =1·4).

The phase part of the transfer function (Bode diagram), of the electromechanical
system is obtained when the speaker and microphone are in contact, i.e. when
na = nr =0; then ntf = nem , Ntf =Nem in equations (29), (30) and (33). The closest
distance measured is for rsm =0·12 m, i.e. na = nr =1·4, as given in Table 1. The
closest curve shown in Figure 14 is for na =0. The −p or (−N/2), at zero
frequency, is implemented by the FIR filter.

It can be seen now that Gtf in equations (17), (18) or (28), can be represented
approximately by a multipole filter of the form

Gtf =1/(1+ jvte )p, (rsm =0) (35)

where te is the effective time constant and p is the equivalent multipole order. From
Table 1 and extrapolation over a frequency range of 10 kHz, {G37p, p3 14.
The ‘‘corner’’ frequency (v3 1/te ) having a phase of 3·5 p at fac 1 440 Hz gives
te =(2pfac )−1 =0·36 ms.

Figure 15 shows similar measured stability regions for a propagation distance
of rsm =3 m (nr =35·3). Apart from changes in Ntf , Figures 13 and 15 are

T 1

Electromechanical transfer function (phase) of the adaptive system; na = nr =1·4

−Ntf 0·5 0·99 1·45 1·83 2·14 2·39 2·59 2·75 2·88 2·99 3·07

fac 0 100 200 300 400 500 600 700 800 900 1000
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Figure 15. Measured stability regions; rsm =3 m (nr =35·3).

equivalent when plotted in terms of ntf , where, from equation (29),
ntf = na − nr + nem . Thus Figure 15 can be converted approximately to Figure 13
by subtracting the equivalent n, corresponding to the difference in propagation
distances: i.e., 3 m−0·12 m0 35·3−1·41 34n. The other differences between
Figures 14 and 15 occur through the modification of Ntf , by reflection from the
hard floor, which in this case was left purposely untreated. The main changes occur
around na =30, with region splitting at about fac =300 Hz and region
displacement at about 800 Hz. The modified transfer function Nemr , including
effects of reflection, is found from Figure 15, equation (33), when na = nr =35·3.
The dominant feature at na 1 48, as fac:a, is given approximately by equation
(35). Further theoretical information on stability criteria can be found in references
[7–9].

3.3.   

For each channel number Nc there will be N2
c propagation paths rsm , and

therefore N2
cN spectrum stability regions to investigate. To demonstrate the

concept, a two channel system is used, Figure 16 shows the spectrum stability strips
for this system. The channels are labelled 2 and 7 for both sources and
microphones, at a nominal source-microphone propagation distances of
rsm =1·5 m; see Figure 2 for ECAS details. Also given are the first four stability
regions N=−1 to −4. These have been approximately measured and aligned, by
adjusting the phase advance na to take into account the difference in each
propagation path (direct paths 2-2, 7-7, na =11 and cross paths 2-7, 7-2, na =17).
From equation (24) nr 1 17·6 for rsm =1·5 m and fn =4000 Hz.
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Note that all regions are not identical even for the same N. Also some of the
regions show splitting, corresponding to ripples in the transfer function allowing
the curve to go into and out of the stability regions. The approximate combined
measured stability regions are also shown for the 2 channel system. Note that all
channel regions have to be aligned at any given frequency for the multichannel
adaptation process to converge. This can be accommodated by lateral fine tuning
of individual stability regions by adjusting the corresponding na .

3.4.  

From equation (19), the nominal stability region length is p radians. However
in practice it is found that the region lengths can be a fraction of p, depending
primarily on the adaptive step size m. Typically the range of m used in these data
is 0·01 to 0·1. The maximum value of m used within each region was found to
depend on the source frequency fac (region stability number N) and position within
the region. The maximum stability, and therefore maximum m used, is not
necessarily in the centre of the region (asymmetric region stability). However,
towards the edges of the regions, one usually finds that the adaptive performance
is considerably degraded. This is usually in terms of lower convergence rate, poorer
cancellation and increased harmonic distortion (generation of side bands of the
primary source frequency).

To obtain deep shadows within these stability regions, care is needed in
optimizing the adaptive process. For example, when using the particular
laboratory set-up, the following operating procedures were found.

(1) With high levels of gain (104) at the input, 50 Hz electrical ‘‘pick up’’ (odd
harmonics only of 50 Hz) is possible in high EM field environments, masking low
frequency signals. Solution—good shielding and common mode rejection used at
the output from the microphones.

Figure 16. Stability regions for 2 channel ANC system; rsm =1·5 m (nr =17·6).
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Figure 17. Good cancellation performance. (a) Uncancelled (primary) field in noise, f=498 Hz
and SL=−13·6 dB; (b) cancelled (primary+secondary) field, SL=−67·3 dB.

(2) Harmonics of the source frequency can easily be generated through
overloading the cancelling secondary sources, particularly at low frequencies. Even
with moderate levels, harmonics can still be generated through speaker support
structure vibration. Solution—dampen structure (in this application hollow
support tubes were filled with sand).

(3) As the step m is increased (faster convergence) the stability bandwidth
reduces. As the reference frequency is increased, the filtered x signal (reference
oscillator signal amplitude), needs to be increased for maximum attenuation.

(4) At the edge of the stability bands, the adaptive speed reduces. Here, if the
reference amplitude x is too big, particularly at low frequencies, harmonics of the
reference frequency are generated. If m and x are too big, side bands of the
reference frequency, are generated.

With the above operating guidelines, deep shadows were obtained. Figure 17
is an example of good stability performance. (rsm =1·5 m, fac =498 Hz, s=8,
m=8, na =11, N=−3, m=0·01). It can be seen that the primary field is
completely eliminated, disappearing into the background noise floor of the
chamber. The chamber ambient noise at these low frequencies is usually generated
by barometric (wind) variations. Odd harmonics of 50 Hz generated by electrical
pickup can just about be resolved. The maximum observable attenuation
measured with low ambient background noise is about 60 dB. The dynamic range
of the electrical equipment (amplifiers) is about 70 dB.

Assuming a properly operated system, we conclude that for optimum
convergence rate (highest m), largest cancellation depth and minimum harmonic
distortion, the phase angle around the loop should be close to an exact multiple
of 2p radians (approximately in the centre of each region).
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Figure 18. 4 channel ECAS condition spectra; a=0·98 m, b=1·4 m; c=1·48 m.

3.5. - 

For example, in the case of an eight channel system, sixty four propagation
paths, each with their own stability regions would have to be considered with some
form of automatic region alignment implemented. For simplicity, a four channel
system is used to demonstrate the adaptive performance. Details of the laboratory
system are illustrated in Figure 2. The dimensions used in taking the following data
are shown in Figure 9; they are a=0·98 m, b=1·4 m, c=1·48 m. Figure 18
shows the calculated conditioning spectra according to equations (43) and (56) for
a four channel system.

The stability bands for each of the 16 propagation distances between 4
microphones and 4 loudspeakers are aligned at the desired frequency, as described
earlier in the text; see Figure 16, for example. The combined (overlapping) stability
bands are shown at four different centre frequencies within the spectrum. The
shaded regions indicate where the system converges quickly. It can be seen that
convergence is easily obtained for condition numbers less than 100.

Within the central part of the stability bands the cancellation is very high at each
of the four microphones. The primary sound is completely suppressed into the
ambient noise of the chamber giving shadows at the microphones greater than
60 dB, similar to those shown in Figure 17. Values of m used were from 0·001 giving
virtually no convergence, to 0·1 where almost instantaneous convergence was
obtained. The leaky LMS algorithm [5], which effectively increases the eigenvalues,
artificially reducing the condition number and thus helping non-robust systems to
converge (but deteriorates shadow performance), was not used.

4. CONCLUSIONS

A free-field, active noise control theory for the generation of electronically
controlled acoustic shadows has been successfully implemented into an adaptive
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control system in a purpose built acoustic facility. It is found that two operating
conditions are essential for good cancellation performance: (a) complying with
control loop stability criteria and (b) operating within multichannel system
conditioning robustness.

It is found that for a monochromatic primary source deep shadows at the error
detectors greater than 60 dB are obtained, limited only by the ambient sound of
the laboratory, provided one observes the following: (a) good system design
(linear, large dynamic range hardware); (b) each adaptive loop is operated close
to the centre of its stability region; (c) all stability regions are aligned at the
frequency of interest (within multiples of 2p radians); (d) the adaptive system is
operated within the valleys of its condition spectra; (e) propagation matrix having
a condition number greater than 100 should be avoided for practical convergence.

If the above operating conditions, or equivalent, are not implemented, it is
unlikely that anything approaching optimum cancellation performance will be
achieved.

This paper has demonstrated that deep acoustic shadows can be generated not
only in theory but also in practice, providing the adaptive system is properly
designed and operated. The concept has been validated for discrete frequencies,
laying the foundation for the cancellation of more complex acoustic sources.
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APPENDIX

Proof of equations (10), (13) and (14)

E=D+CW (A1)

J=a \ E \ 2 =EHE (A2)

=WHCHCW+WHCHD+DHCW+DHD (A3)

=WHaW+WHb+ bHW+C (A4)

where a=CHC b=CHD C=DHD (A5)

For complex quantities

W=WR + jWI a= aR + jaI b= bR + jbI (A6)

J=(WR + jWI )H(aR + jaI )(WR + jWI )

+ (WR + jWI )H(bR + jbI )+ (bR + jbI )H(WR + jWI )+C (A7)

=WT
TaRWR +WI

IaRWI −2WT
R aIWI +2bT

RWR +2bT
I WI +C (A8)

Generally it

u=XTAX u=ATX u=XT
RAXI u=XT

RAXI (A9)

then
1u
1x

=2Ax,
1u
1x

=A,
1u
1xR

=AXI ,
1u
1xI

=ATXR =−AXR (A10)

giving

1J
1WR

=2aRWR −2aIWI +2bR
1J

1WI
=2aRWI +2aIWR +2bI (A11)

9J=
1J

1WR
+ j

1J
1WI

(A12)

9J=2aR (WR + jWI )−2aI(WI − jWR )+2(bR + jbI ) (A13)

=2(aR + jaI )(WR + jWI )+2(bR + jbI ) (A14)

=2(aW+ b)=2CH(CW+D)=2CHE (A15)
(equation 10)

9J=0 aw0 + b=0 W0 =−a−1b=−(CHC)−1CHD (A16)
(equation 13)

Substituting in A4

J0 =WH
0 aW0 +WH

0 b+ bHW0 +C (A17)

= bHW0 +C=(CHD)H(−(CHC)−1CHD)+DHD (A18)

=DH[I−C(CHC)−1 CH]D (A19)
(equation 14)


	INTRODUCTION
	Figure 1

	THEORY INTO PRACTICE
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	MEASURED DATA
	Figure 13
	Figure 14
	Table 1
	Figure 15
	Figure 16
	Figure 17
	Figure 18

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX

